Lexicographic Product of Standard Graphs Using Claw Decompositions

¹ C.Sujatha and ² A.Manickam

¹ Principal, Professor of Mathematics, Marudu Pandiyar College, Vallam Post, Thanjavur–613 403, Tamilnadu, India.

Email id: sujatha2276@gmail.com

² Assistant Prof of Mathematics, Marudu Pandiyar College, Vallam Post, Thanjavur–613 403, Tamilnadu, India. Email id: manickammaths2011@gmail.com

Abstract- In this paper, we shall discuss necessary and sufficient condition for the decomposition of Cartesian products of standard graphs into claws. Also, we give a sufficient condition for the claw decomposition of Lexicographic product of standard graphs.

Keywords- Claw decomposition, Cartesian product, Lexicographic product.

1. INTRODUCTION

Let $G = \{V, E\}$ be a simple undirected graph without loops or multiple edges. A path on n vertices is denoted by p_n , cycle on n-vertices is denoted by c_n and complete graph on n vertices is denote by k_n .A decomposition of a graph G is a family of Edgedisjoint subgraphs $\{G_1, G_2, G_3, G_4, \dots, G_k\}$ such that $E(G) = E(G_1)UE(G_2) \dots \dots UE(G_k)$. If each G_i is isomorphic to H for some subgraph H of G,then the decomposition is called a H-decomposition of G. If H has at least three edges, then the problem of deciding if a Graph G has a H-decomposition is NP-Complete[2].A star with three edges is a called a claw. A complete bipartite graph with partite sets V_1 and V_2 , where $|V_1| = r$ and $|v_2| = S$, is denoted by $K_{r,s}$. The Graph $K_{1,r}$ is called star and is denoted by S_r . The vertex of degree r in the star S_r is called the central vertex of the star. The complement of a graph G is denoted by \overline{G} . K_G denotes the union of k copies of G.The join G + H of two graphs G and H consists of G U H and all edges joining each vertex of G to all the vertices of H.Terms not defined here are used in the sense of [4].

If h has at least three edges, then the problem of deciding if a Graph G has a Hdecomposition is NP-Complete[1,2]..

In 1975, Sumiyasu, yamamoto etal.., gave necessary and sufficient condition for the S_k decomposition of complete graphs and complete bipartite graphs. In 1996, C.Lin and T.W Shyu[4]presented a necessary and sufficient condition for decompositions K_n into stars

$$S_{k_1}, S_{k_2} \dots \dots S_{k_t}$$

2004,H.L.Fu In et al .,[3] decomposed a complete graph into Cartesian product of two complex graphs $K_r K_t$.

In 2012, Darry E.Bryant et al[1] gave necessary and sufficient condition for the existence of K-star factorizations of any power K_q^{s} , where q is prime and the products

 $C_{r_1} X C_{r_2} X C_{r_3} \dots C_{r_k}$ of k cycles of arbitrary length.

In 2013 Tay-Woei shyu[5] gave necessary and sufficient condition for the decomposition of complete graph into C_1 's and S_k 's.

In this paper, we give necessary and sufficient condition for decomposition of Cartesian product of standard graphs into claws. Also we give a sufficient condition for the claw-decomposition of lexicographic product of standard Graphs.

2. PRELIMINARIES

In this section, We collect ceratin lemma's and results which are used in the subsequent sections. These are the building blocks in the construction of the main theorems.

Definition 2.1

The corona of two graphs G and H,is the graph GoH formed from one copy of G and |V(G)| copies of H where the ith vertex of G is adjacent to every vertex in the ith copy of H. **Definition 2.2**

The Cartesian product of two Graphs g and H is a graph, denoted by

G x H, whose vertex set is V(G)xV(H).Two vertices (g.h) and (g^1,h^1) are adjacent precisely if $g=g^1$ and $h\ddot{h} \in E(H)$ or $g\ddot{q} \in E(G)$ and $h=h^1$.

Thus
$$V(GxH)=\{(g.h)/g \in V(G) \text{ and } h \in V(H)\}$$

 $E(VxH) = \{(g,h)(g^1,h^1)/g = g^1 \text{ and } hh^1 \in E(H) \text{ or }$ $gg^1 \in E(G)$ and $h = h^1$

Theorem 2.3

A complete Graph k_1 with l pairs and (l/2)lines can be decomposed into a union of line disjoint(l/2)/c claws $K_{1,c}$ with l lines each \Leftrightarrow

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

(i)(l/c) is an integral multiple of c and (ii) $l \ge 2c$.

Theorem 2.4

A complete bigraph $K_{m,n}$ with m and n points and mn lines each the decomposed into union of mn/cline disjoint (l/2)/c claws k_1,c with c lines each \Leftrightarrow if m and n satisfy one of the following three conditions. (i)n=0(mod c)when m<c

(ii) $m \equiv 0 \pmod{c}$ when n < c

(iii)mn=0(mod c)when $m \ge c$ and $n \ge c$

Theorem 2.5

The Graph C _n o $\overline{k_2}$ is claw decomposable for all n.

Proof:

Let $V(C_n) = \{V_1, V_2, \dots, V_n\}$ And let u_i and w_i be the pendant vertices at V_i . then $\langle \{u_i, w_i, v_i, v_{i+1}\} \rangle \geq k_{1,3}$ for all $1 \leq i \leq n-1$ and $\langle \{u_n, w_n, v_n, v_1\} \rangle \geq k_{1,3}$

Thus E(Cn 0 $\overline{k_2}$)=E(k_{1,3}) U ... U E(K_{1,3}).

Hence Cn 0 $\overline{k_2}$ is claw decomposable

Theorem 2.6

If n is even and $n \equiv 0 \pmod{3}$ then $k_2 \ge C_n$ is claw decomposable.

Proof:

Let $V(K_2) = \{x_1, x_2\}$

And let $V(C_n)=\{y_1, y_2, \dots, y_n\}$ then $V(k_2 \ X V_n)=\{(x_i, y_j)/i=1, 2 \text{ and } 1 \le j \le n$ Rename $(x_1, y_j)=v_j$ and $(x_2, y_j)=u_j \forall 1 \le j \le n$.. Now

 $< \{v_1, v_2, v_n, u_1\} > \cong K_{1,3}$

 $< \{u_1, u_{n-1}, u_n, v_n\} > \cong K_{1,3}$

 $<\{u_{i+1}, v_i, v_{i+1}, v_{i+2}\} \ge K_{1,3} \forall i \in \{2, 4, 6... n-2\}$

And

< $u_{i}, u_{i+1}, u_{i+2}, u_{i+1}$ $> \cong \forall i \in \{1, 3, 5, 7, ..., n-3\}$

Thus $E(k_2 \ X \ C_n) = E(k_{1,3}) \ U \dots U \ E(k_1)$ Hence $k_2 \ X \ C_n$ is claw decomposable.

3. CLAW DECOMPOSITION OF CARTESIAN PRODUCT OF GRAPHS

In this section we give necessary and sufficient condition for the decomposition of Cartesian product of some standard graphs into claws. **Theorem 3.1** If G₁ and G₂ are H decomposable then G₁ X G₂ is H decomposable. **Proof:** Let V(G₁)={V₁,V₂,...,V_K) and V(G₂)={u₁,u₂...,u_n) then V(G₁ XG₂)={(v_i,u_j)/1≤i≤k,1≤j≤n} Rename (v_i,u_j)=v_{ij}; 1≤i≤k,1≤j≤n Now $<{v_{1,j}, v_{2,j}, ..., v_{k,j}}>\cong G_1 \forall 1\le j\le n$ $<{u_{i,1}, u_{i,2}, ..., u_{i,n}}>\cong G_2 \forall 1\le j\le k$ Thus E(G₁ XG₂)=E(G₁) UU E(G₁) U E(G₂) U....U E(G₂) Since G_1 and G_2 is H decomposable

Corollary 3.2

If m,n $\equiv 0 \pmod{3}$ then $k_{1,m} \ge k_{1,n}$ is claw decomposable.

Corollary 3.3

If $m \equiv 0 \pmod{3}$ and $n \neq 2 \pmod{3}$ then $k_{1,m} \ge k_n$ is claw decomposable.

Proof:

It follows the theorem 2.3.and 3.1

Corollary 3.4

If $rs \equiv 0 \pmod{3}$ and claw $n \equiv 2 \pmod{3}$

then $k_{r,s} X k_n$ is claw decomposable.

Proof: It follows the theorem 2.3,2.4and 3.1 *Corollary 3.5*

If $rs \equiv 0 \pmod{3}$ and claw $n \equiv 0 \pmod{3}$

then $k_{r,s} X k_{1,n}$ is $k_{1,3}$ decomposable. **Proof:**

It follows from theorem 2.4 and 3.1

4. CLAW DECOMPOSITION OF

LEXICOGRAPHIC PRODUCT OF GRAPHS

In this section, we give sufficient condition for the lexicographic product of any Graphs G with $\overline{k_n}$, k_n, k_{m,n} and k₂ x k_n to be claw decomposable. **Definition 4.1**

The lexicographic product of two Graphs G and H is a Graph denoted by G * H,whose vertex set is V(G) x V(H).Two vertices (g,h) and (\dot{g},\dot{h}) are adjacent precisely if $g\dot{g} \in E(G)$,or $g=\dot{g}$ and $h\dot{h} \in E(H)$.

The other way of viewing G * H is by replacing each vertex in G by a copy of H and two vertices in G are adjacent if and only if if there exists a complete bipartite sub graph with the corresponding vertices of H as partite sets in G*H.

Theorem 4.2

Let G be any non-trivial Graph.It $n \equiv 0 \pmod{3}$, then $G^* \overline{k_n}$ is claw decomposable.

Proof:

Assume that $n \equiv 0 \pmod{3}$ Let V(G)= $\{v_1, v_2, ..., v_k\}$ And V($\overline{k_n}$) = { $u_{1,u_2...,u_n}$ } Then V(G* $\overline{k_n}$) = { (v_i,u_j)/1 $\leq i \leq k, 1 \leq j \leq n$ } Rename $(V_{i,u_j})=V_{ij}; 1 \le i \le k, 1 \le j \le n$ for Now each e V_i, V_i $E(G) < \{v_{1,i}, v_{2,i}, ..., v_{n,i}, v_{1,j}, v_{2,j}, ..., v_{n,j}\} \ge \cong k_{n,n}$ Thus $E(G^*\overline{k_n}) = E(k_{n,n})U...UE(k_{n,n})$ Since $n \equiv 0 \pmod{3}$, by thorem 2.4 $K_{n,n}$ is claw decomposable. Hence $G^*\overline{k_n}$ is claw decomposable Theorem 4.3 Let G be any non-trival graph. If n>3 and $n \equiv 0 \pmod{3}$, then G^*K_n is claw decomposable.

Proof:

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Assume that n>3 and $n\equiv 0 \mod 3$ Let $V(G) = \{v_1, v_2, ..., v_k\}$ And $V(K_n) = \{u_1, u_2, ..., u_n\}$ Then V(G* K_n)= $(v_i u_i)/1 \le i \le k, 1 \le j \le n$ Rename $(V_{i,}u_{j})=V_{ij}; 1 \le i \le k, 1 \le j \le n$ Now $< \{ v_1, v_2, \dots v_n \} > \cong k_n \forall 1 \le i \le k,$ Also for each $v_i, v_i \in E(G)$ $< \{v_{1i}, v_{2i}, \dots v_{ni}, v_{1j}, v_{2j}, \dots v_{ng} >$ $E(<\{V_{1i}, V_{2i}, v_{ni}>)$ $E(<\!\!\{V_{1j},\!V_{2j....vnj}\!\!>\!)\cong\!\!k_{n,n}$ Thus $E(G * K_n) = E(K_n) \cup \dots \cup E(K_n) \cup E(K_{n,n})$ Since $n \equiv 0 \mod(3)$ by them 2.3 and 2.4 and $k_{n,n}$ are claw decomposable . Hence $G * K_n$ is claw decomposable.

5. CONCLUSION

In this paper, we shall discuss about claw decomposition of Product graphs. We give necessary and sufficient condition for the decomposition of Cartesian product stdand ard and ordinary graphs into claws. Also we give a sufficient condition for the claw decomposition of lexicographic product of standard and ordinary graphs has been clearly understood and discussed in this research article.

REFERENCES

- [1] Darry E.Bryant,Saad EL.Zanati and charless vanden Eyden (2001). "Star factorization of graph products"Journal of Graph theory 36 PP 59-66.
- [2] H.L.Fu,F.K.Hwang.MJimboYMutoh,C.L.shiue(2 004). "Decomposition and complex graphs into K_r X K_c's"Journal of Statistical Planning and Interference119. PP 225-236.
- [3] [C.Lin and T.W.Shyu (1996)."A necessary and sufficient condition for the star decomposition of complete graphs"Journal of Graph theory. 23:361-364.
- [4] P.Chitra devi and J.Paulraj Joesph (2014).
 "Claw decomposition of product graphs". International Journal of Mathematical Science.vol.13.Jan –June.
- [5] Tay.Woei shyu. (2013). "Decomposition of complete graphs into cycles and stars "Graphs and combinotorics 29 pp:311-313.